Minus partial order and linear preservers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minus Partial Order in Rickart Rings

The minus partial order is already known for complex matrices and bounded linear operators on Hilbert spaces. We extend this notion to Rickart rings, and thus we generalize some well-known results.

متن کامل

Linear Preservers of Majorization

For vectors $X, Yin mathbb{R}^{n}$, we say $X$ is left matrix majorized by $Y$ and write $X prec_{ell} Y$ if for some row stochastic matrix $R, ~X=RY.$ Also, we write $Xsim_{ell}Y,$ when $Xprec_{ell}Yprec_{ell}X.$ A linear operator $Tcolon mathbb{R}^{p}to mathbb{R}^{n}$ is said to be a linear preserver of a given relation $prec$ if $Xprec Y$ on $mathbb{R}^{p}$ implies that $TXprec TY$ on $mathb...

متن کامل

Linear Size Distance Preservers

The famous shortest path tree lemma states that, for any node s in a graph G = (V,E), there is a subgraph on O(n) edges that preserves all distances between node pairs in the set {s}×V . A very basic question in distance sketching research, with applications to other problems in the field, is to categorize when else graphs admit sparse subgraphs that preserve distances between a set P of p node...

متن کامل

Projection Inequalities and Their Linear Preservers

This paper introduces an inequality on vectors in $mathbb{R}^n$ which compares vectors in $mathbb{R}^n$ based on the $p$-norm of their projections on $mathbb{R}^k$ ($kleq n$). For $p>0$, we say $x$ is $d$-projectionally less than or equal to $y$ with respect to $p$-norm if $sum_{i=1}^kvert x_ivert^p$ is less than or equal to $ sum_{i=1}^kvert y_ivert^p$, for every $dleq kleq n$. For...

متن کامل

Latin-majorization and its linear preservers

In this paper we study the concept of Latin-majorizati-\on. Geometrically this concept is different from other kinds of majorization in some aspects. Since the set of all $x$s Latin-majorized by a fixed $y$ is not convex, but, consists of union of finitely many convex sets. Next, we hint to linear preservers of Latin-majorization on $ mathbb{R}^{n}$ and ${M_{n,m}}$.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear and Multilinear Algebra

سال: 2015

ISSN: 0308-1087,1563-5139

DOI: 10.1080/03081087.2015.1121965